0 | module Data.Container.Category
2 | import public Data.Category
3 | import public Data.Container
4 | import public Data.Container.Morphism
5 | import public Data.Container.Morphism.Eq
7 | import Proofs.Extensionality
14 | composeIdRight : (f : a =%> b) -> f ⨾ Morphism.identity = f
15 | composeIdRight (fwd <| bwd) = Refl
18 | composeIdLeft : (f : a =%> b) -> Morphism.identity ⨾ f = f
19 | composeIdLeft (fwd <| bwd) = Refl
22 | proveAssoc : (f : a =%> b) -> (g : b =%> c) -> (h : c =%> d) ->
23 | f ⨾ (g ⨾ h) = (f ⨾ g) ⨾ h
24 | proveAssoc (fwd0 <| bwd0) (fwd1 <| bwd1) (fwd2 <| bwd2) = Refl
28 | Cont : Category Container
31 | (\_ => Morphism.identity)